STRUCTURES
AND
UNIONS

DoCSE

Introduction
* Itis a convenient tool for handling a group of
logically related data items.
— Student name, roll number, and marks
— Real part and complex part of a complex number
* This is our first look at a non-trivial data
structure.
— Helps in organizing complex data in a more
meaningful way.

* The individual structure elements are called
members.

Defining a Structure

* The composition of a structure may be defined
as:

struct tag {
member 1;
member 2;

member m;
J3
— struct is the required keyword.
— tag is the name of the structure.

— member 1, member 2, ... are individual member
declarations.

Contd...

* The individual members can be ordinary
variables, pointers, arrays, or other structures.

— The member names within a particular structure
must be distinct from one another.

— A member name can be the same as the name of a
variable defined outside of the structure.

* Once a structure has been defined, individual
structure-type variables can be declared as:

struct tag variable 1, variable 2, ..., variable n;

Example

e A structure definition:

struct student {
char name|30];

int roll number;

int total marks;
char dob[10];

33
* Defining structure variables:
struct student al, a2, a3;

A Compact Form

+ Itispossible to combine the declaration of the [struct student |
structure with that of the structure variables: fﬂﬁf"ﬁﬁﬂl‘er
struct tag | int total marks;
: char dob[10];
member I; 'l a2, a3
member 2;
struct {
char name[30];
member m; int roll_ number;
| variable 1, variable 2,..., variable n; 2'11:3:0:1?]]5;'1‘3]" ks;
* In this form, “tag” is optional. e

Size of a Structure

#include<stdio.h>

typedef struct{
char name[80];
char dept[30];
int roll_no;
} studinfo;

main()

{

studinfo a;
printf("a store %d bytes",sizeof(a));

}

struct date {
char name[80];
int month;

int day;

int year;

}

struct date birthday| | = {*“Amy”’, 12, 30, 73, “Galil”, 5, 13, 66, “Marc”, 7, 15,
72, “Marla”, 11, 29, 70,°Megan”, 2, 4, 77,”Sharonw’’,12, 29, 63, “‘Susan’, 4,
12,69};

#include<stdio.h>

struct studinfo{
char name[80];
char dept[30];
int roll_no;

¥

main()

{

struct studinfo si;

printf("Your name:");

scanf(“ %[*\n]",si.name);

printf("\nYour department:");
scanf(""%s",si.dept);

printf("\nYour roll number:");
scanf("%d",&si.roll_no);
printf(l'*************************l');
printf("\nYour Name:%s",si.name);
printf("\nYour Department:%s",si.dept);
printf("\nYour Roll Number:%d",si.roll_no);

}

#include<stdio.h> ;5in()

struct date{ struct studinfo Sl;
]] printf("Your name:");
int month; scanf(* %[*\n]",si.name);
int day; printf("\nYour department:");
int year; Scanf("%s",si.dept);
_ ’ printf("\nYour roll number:");
E scanf("%d",&si.roll_no);

printf("\nDate of birth: (mm/dd/yy) ";
struct studinfof scan:("%d%d%d" ,&sl.birth. mon;h &SI birth.day,&si.birth.year);

] rlnt Whkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkk? ;

char name[80]; /intf("\nYour Name:%s",si. name);

char dept[30]; printf("\nYour Department %s",Si. de pt);

int roll_no; printf("\nYour Roll Number:%d",si.roll_no);

truct date birth: printf("\nYour Birthday:%d-%d-
struct date birth; %d" si.birth.month,si.birth.day,si.birth.year);

E }

#include<stdio.h>

struct studinfo{
char name[80];
char dept[30];
int roll_no;

¥

main()

{

int n,i;

struct studinfo si[100];

printf("How many student
information are you storing: ");

scanf("%d",&n);

for(i=0;i<n;++i){
printf("Your name:");
scanf(“ %[M\n]",si[i].name);
printf("Your department:");
scanf(“ %[*\n]",si[i].dept);
printf("Your roll number:");
scanf("%d",&si[i].roll_no);

}

3141 Chcialaiabbbobebbbb bttt ittt LAY
prin n);
T (1 Gt bttt bbb b Lt LI
pPrin ’

rintf("\n"");
or(i=0;i<n;i++)

printf("\nYour Name:%s",si[i].name);
printf('"\nYour Department:%s",si[i].dept);
printf("\nYour Roll Number:%d",si[i].roll_no);

H "w kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
printf("\n);

}
}

#include<stdio.h>

struct studinfo{
char name[80];
char dept[30];
int roll_no;

¥

main()

{

int n,i;

struct studinfo si[100];

printf("How many student
information are you storing: ");

scanf("%d",&n);

for(i=0;i<n;++i){
printf("Your name:");
scanf(“ %[M\n]",si[i].name);
printf("Your department:");
scanf(“ %[*\n]",si[i].dept);
printf("Your roll number:");
scanf("%d",&si[i].roll_no);

}

3141 Chcialaiabbbobebbbb bttt ittt LAY
prin n);
T (1 Gt bttt bbb b Lt LI
pPrin ’

rintf("\n"");
or(i=0;i<n;i++)

printf("\nYour Name:%s",si[i].name);
printf('"\nYour Department:%s",si[i].dept);
printf("\nYour Roll Number:%d",si[i].roll_no);

H "w kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
printf("\n);

}
}

#include<stdio.h>

struct date{
int month;
int day;
int year;

¥

struct studinfo{
char name[80];
char dept[30];
int roll_no;
struct date birth;

¥

main()

{

int n,i;

struct studinfo si[100];

printf("How many student information are you

storing: ");

scanf("%d",&n);

for(i=0;i<n;++i){
printf("Your name:");
scanf(“ %[*\n]",si[i].name);
printf("Your department:");
fflush(stdin);
scanf(“ %[A\n]",si[i].dept);
printf("Your roll number:");
scanf("%d",&si[i].roll_no);
printf("\nDate of birth:(mm/dd/yy)");
scanf(""%d%d%d",&si[i].birth.month,&si[i].birth.d
ay,&si[i].birth.year);
}

Processing a Structure

* The members of a structure are processed
individually, as separate entities.

* A structure member can be accessed by writing
variable.member

where variable refers to the name of a
structure-type variable, and member refers to
the name of a member within the structure.

* Examples:

— al.name, a2.name, al.roll_ number, a3.dob;

Programming Example

#include <stdio.h> printf (“\n %f + %f)™, c.real,
main() SCDPE c.complex);
{ restricted |
struct complex ey
{ within
float real; main()
float complex; <
} a,b,c

scanf (“%f %17, &a.real, &a.complex);
scanf (“%f %17, &b.real, &b.complex);

c.real = a.real + b.real; Reading a member
c.complex = a.complex + b.complex;

- variable

Accessing members

Comparision of structure variable

* Unlike arrays, group operations can be
performed with structure variables.

— A structure variable can be directly assigned to
another structure variable of the same type.
al =a2;
* All the individual members get assigned.
— Two structure variables can be compared for
equality or inequality.
if (al==2a2)

* Compare all members and return 1 if they are equal; 0
otherwise.

Arrays of Structure

* Once a structure has been defined, we can
declare an array of structures.

struct student class[50];

— The individual members can be accessed as:

 class[i].name
* class[5].roll number

* A structure member can be an array:

struct student {
char name|[30];

int roll number;
int marks[5];
char dob|[10];

1 al, a2, a3;

 The array element within the structure can be

accessed as:
al.marks|[2]

Defining date type: using typedef

* One may define a structure data-type with a

single name. typedef struct{
+ (eneral syntax:
o float real;
typedef struct { |
member-variablel; float imag;
member-variable2; } COMPLEX;

member-variableN; COMPLEX ab.c:
| tag; B
+ tag is the name of the new data-type.

Structure Initialization
* Structure variables may be initialized following
similar rules of an array. The values are
provided within the second braces separated by

commas.
* An example:
_COMPLEX a={1.0,2.0}, b={-3.0,4.0};

Parameter Passing in a function
* Structure variables could be passed as
parameters like any other variable. Only the
values will be copied during function

invokation.
void swap(_ COMPLEX a, COMPLEX b)

{
_COMPLEX tmp;

tmp=a;

a=b;

b=tmp,;
}

#include <stdio.h> void print(_COMPLEX a)

typedef struct{ {printf("(%f , %f) \n",a.real,a.imag);
float real; }
float imag;
} COMPLEX; main()

| {
void swap(_COMPLEX a, _COMPLEXb) COMPLEX x={4.0,5.0},y={10.0,15.0};
{

_COMPLEX tmp; print(x); print(y);
swap(x,y);

tmp=a; print(x); print(y);

a=h; }

b=tmp;

m~a --} mm

Returning Structure

* Itis also possible to return structure values
from a function. The return data type of the
function should be as same as the data type of
the structure itself.

_COMPLEX add(_COMPLEX a, COMPLEX b)

{
_COMPLEX tmp;

tmp.real=a.real+b.real,
tmp.imag=a.imag+b.imag;

return(tmp);

Array of Structure

struct stud {
int roll;
char dept_code[25];
float cgpa;
}s
struct stud a, b, c;
* And the individual structure elements can be
accessed as:

a.roll , b.roll , c.cgpa , etc.

* We can define an array of structure records as
struct stud class|[100] ;

* The structure elements of the individual
1records can be accessed as:

class[i].roll
class[20].dept_code
class[k++].cgpa

Example: Sorting

#include <stdio.h>
stiuct stud

d
int roll;
char dept code[25];
float cgpa;

main()

{
struc stud class[100], t;

int j, Kk, n;

scanf (“%d”, &n);
/* no. of students */

for (k=0; k<n; k++)
scanf (“%d %s %1, &class[Kk].roll,
class[k].dept code, &class[Kk].cgpa);
for (j=0; j<n-1; j++)
for (k=j+1; k<n; k++)

{
if (class[j].roll > class[Kk].roll)
{
t = class[j] ;
class[j] = class[K] ;
class[k] =t
j
j

<<<< PRINT THE RECORDS >>>>

Pointer and Structure

* You may recall that the name of an array
stands for the address of its zero-th element.

— Also true for the names of arrays of structure
variables.

* (Consider the declaration:

struct stud {
int roll;
char dept _code[25];
float cgpa;
+ class[100], *ptr ;

— The name class represents the address of the zero-th
element of the structure array.

— ptr is a pointer to data objects of the type struct stud.
* The assignment

ptr = class ;
will assign the address of class|[0] to ptr.

* When the pointer ptr is incremented by one
(ptr++) :
— The value of ptr is actually increased by sizeof(stud).

— It is made to point to the next record.

* Once ptr points to a structure variable, the

members can be accessed as:
ptr — roll ;
ptr — dept_code ;
ptr —> cgpa ;

— The symbol “—>"’ is called the arrow operator.

Example: Pointer

swap_ref(COMPLEX *a, COMPLEX *b)
{

_COMPLEX tmp;

tmp==a;

a=};

*b=tmp;
h

orinf{ COMPLEX 3

|
printl(" (%L, %f)n" a->real a->1mag);

e

Things to remember

* When using structure pointers, we should take
care of operator precedence.

— Member operator “.” has higher precedence than “*”.

* ptr—=>roll and (*ptr).roll mean the same thing.

 *ptr.roll will lead to error.

— The operator “—>” enjoys the highest priority among
operators.
« +tptr —>roll will increment roll, not ptr.
* (++ptr)—>roll will do the intended thing.

#include <stdio.h>

struct complex {
float re;
float im;

¥s

main()

{
struct complex a, b, c;
scanf (“%of %f”, &a.re, &a.im);
scanf (% f %f”’, &b.re, &b.im);
¢ = add (a, b) ;
printf (*\n %f %f”, c.re, c.imn);

}

#finclude <stdio.h>

struct complex {
float re;
float im;

=

main()

{
struct complex a, b, c;
scanf (“%f %f”’, &a.re, &a.im);
scanf (“%of %1, &b.re, &b.im);
add (&a, &b, &) ;
printf (*\n %f %f”, c,re, c.in);

strruact complex add (x, v)
strruact complex x. v

struct complex €3
ft.re — X.¥re + y.1re 3
t.izm — X.irmm + v.imm 3

refurm () :

void add (x, v. 1)

struct complex *x, *v, ¥t;

{

I->re = xXx-=>re + V-=Tre |

- |

t-=im = X-=im + vy-=im ;

Contd...

storage-class struct tag {

member 1 ;

member 2;

member m;

jvariable 1, variable 2, . . ., variable n;

it is possible to combine the declaration of the structure
composition with that of the structure variables

Contd...

struct account {

Int acct_no;

char acct_type;

char name[80];

float balance ;

} oldcustomer, newcustomer;

oldcustomer and newcustomer are structure variables of
type account

Contd...

struct date {
int month;
int day;

int year;

15

struct account {

int acct_no;

char acct_type;

char name|[80];

float balance ;

struct date lastpayment;

15

Contd...

struct account customer
= {12345, ‘R’, “John W. Smith”, 586.30, 5, 24, 90};
//structure name account

//structure variable customer

Members: acct_no = 123435; acct_type= ‘R’; name[80] = “John W.
Smith”’; balance = 586.30; month = 5; day = 24; year = 90

Declaration: Structure Variable as an array

struct date {
int month;
int day;

int year;

}5

struct account
{
int acct-no;
char acct-type;
char name[80];
float balance;
struct date lastpayment;
} customer| 100];

struct date {
int month;
int day;

int year;

}s

struct account {

int acct_no;

char acct-type;

char name[80];

float balance ;

struct date lastpayment;
}s

struct account customer[100];

struct date {
char name[80];
int month;

int day;

int year;

}

struct date birthday| | = {*“Amy”’, 12, 30, 73, “Galil”, 5, 13, 66, “Marc”, 7, 15,
72, “Marla”, 11, 29, 70,°Megan”, 2, 4, 77,”Sharonw’’,12, 29, 63, “‘Susan’, 4,
12,69};

#include<stdio.h>

struct studinfo{
char name[80];
char dept[30];
int roll_no;

¥

main()

{

struct studinfo si;

printf("Your name:");

scanf(“ %[*\n]",si.name);

printf("\nYour department:");
scanf(""%s",si.dept);

printf("\nYour roll number:");
scanf("%d",&si.roll_no);
printf(l'*************************l');
printf("\nYour Name:%s",si.name);
printf("\nYour Department:%s",si.dept);
printf("\nYour Roll Number:%d",si.roll_no);

}

#include<stdio.h> ;5in()

struct date{ struct studinfo Sl;
]] printf("Your name:");
int month; scanf(* %[*\n]",si.name);
int day; printf("\nYour department:");
int year; Scanf("%s",si.dept);
_ ’ printf("\nYour roll number:");
E scanf("%d",&si.roll_no);

printf("\nDate of birth: (mm/dd/yy) ";
struct studinfof scan:("%d%d%d" ,&sl.birth. mon;h &SI birth.day,&si.birth.year);

] rlnt Whkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkk? ;

char name[80]; /intf("\nYour Name:%s",si. name);

char dept[30]; printf("\nYour Department %s",Si. de pt);

int roll_no; printf("\nYour Roll Number:%d",si.roll_no);

truct date birth: printf("\nYour Birthday:%d-%d-
struct date birth; %d" si.birth.month,si.birth.day,si.birth.year);

E }

#include<stdio.h>

struct studinfo{
char name[80];
char dept[30];
int roll_no;

¥

main()

{

int n,i;

struct studinfo si[100];

printf("How many student
information are you storing: ");

scanf("%d",&n);

for(i=0;i<n;++i){
printf("Your name:");
scanf(“ %[M\n]",si[i].name);
printf("Your department:");
scanf(“ %[*\n]",si[i].dept);
printf("Your roll number:");
scanf("%d",&si[i].roll_no);

}

3141 Chcialaiabbbobebbbb bttt ittt LAY
prin n);
T (1 Gt bttt bbb b Lt LI
pPrin ’

rintf("\n"");
or(i=0;i<n;i++)

printf("\nYour Name:%s",si[i].name);
printf('"\nYour Department:%s",si[i].dept);
printf("\nYour Roll Number:%d",si[i].roll_no);

H "w kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
printf("\n);

}
}

#include<stdio.h>

struct date{
int month;
int day;
int year;

¥

struct studinfo{
char name[80];
char dept[30];
int roll_no;
struct date birth;

¥

main()

{

int n,i;

struct studinfo si[100];

printf("How many student information are you

storing: ");

scanf("%d",&n);

for(i=0;i<n;++i){
printf("Your name:");
scanf(“ %[*\n]",si[i].name);
printf("Your department:");
fflush(stdin);
scanf(“ %[A\n]",si[i].dept);
printf("Your roll number:");
scanf("%d",&si[i].roll_no);
printf("\nDate of birth:(mm/dd/yy)");
scanf(""%d%d%d",&si[i].birth.month,&si[i].birth.d
ay,&si[i].birth.year);
}

OFINtf(TH*rsssxrrrrrrrrt R)
OFINEf(mH s sxrrrrrer bRk R RRT)
printf("\n");
for(i=0;i<n;i++){
printf("\nYour Name:%s",si[i].name);
printf("\nYour Department:%s",si[i].dept);
printf("\nYour Roll Number:%d",si[i].roll_no);

printf("\nYour Birthday:%d-%d-
%d",si[i].birth.month,si[i].birth.day,si[i].birth.year);

H n khkkkkkkkkkhkkkkhkkhkkkkkhkkhkkhkkkhkkhkkkhkkkkkhkkkkkkkkn).
printf("\n)

| ,

existing data types

* new data type is defined as

typedef type new- type,

typedef int age;

age male, female;

1s equivalent to writing
int male, female;

typedef

» typedef feature allows users to define
new data-types that are equivalent to

//[Example

#include<stdio.h>

main()

{

typedef int sk;

sk a,b,sum;

printf("Enter two number");
scanf("%d%d",&a,&b);
sum=a+b;

printf("sum of %d and %d is
%d",a,b,sum);

}

Contd...

struct studinfo{ typedef studinfof
char name[80]; char name[80];
char dept[30]; char dept[30];
int roll_no; int roll_no;
¥ } studinfo;

struct studinfo a,b; studinfo a,*pa;

#include<stdio.h>

typedef struct{
char name[80];
char dept[30];
int roll_no;
lstudinfo;

main()

{

studinfo a,*pa;

pa=&a;

printf("What is your name? ");

scanf(" %[*\n]",a.name);

printf("\n Your department ");

scanf(" %[*\n]",a.dept);

printf("\n Your Roll number ");

scanf("%d",&a.roll_no);

printf("\n***********************\n");

printf("Your Name:%s",pa->name);

printf("\nYour Department:%s",pa-
>dept);

printf('"\n Your Roll no:%d",pa->roll_no);

}

#include<stdio.h>

typedef struct{
char name[80];
char dept[30];
int roll_no;
lstudinfo;

main()

{

studinfo a,*pa;

pa=&a;

printf("What is your name? ");

scanf(" %[*\n]",a.name);

printf("\n Your department ");

scanf(" %[*\n]",a.dept);

printf("\n Your Roll number ");
scanf("%d",&a.roll_no);
printf("\n***********************\n");
printf("Your Name:%s",(*pa).name);
printf(""\nYour Department:%s",(*pa).dept);
printf('"\n Your Roll no:%d",(*pa).roll_no);

}

#include<stdio.h>

typedef struct{
char name[80];
char dept[30];
int roll_no;
}studinfo;

main()

{

studinfo a,*pa;

pa=&a;

printf(""What is your name? ");

scanf(” %[*\n]",a.name);

printf("\n Your department ");

scanf(" %[*\n]",a.dept);

printf("\n Your Roll number ");
scanf("%d",&a.roll_no);
printf(ll\n***********************\n");
printf("Your Name:%s",pa->name);
printf("\nYour Department:%s",pa->dept);
printf("\n Your Roll no:%d",pa->roll_no);
printf(ll\n***********************\n");
++pa->roll_no;

printf("Your Name:%s",pa->name);
printf("\nYour Department:%s",pa->dept);
printf("\n Your Roll no:%d",pa->roll_no);

}

#include<stdio.h>
i{nt update(int n)

n=n+1;
return n;

}

typedef struct{
char name[80];
char dept[30];
int roll_no;
}studinfo;

main()

studinfo a,*pa;

pa=&a;

printf("What is your name? ");

scanf(" %[*\n]",a.name);

printf("\n Your department "');

scanf(" %[*\n]",a.dept);

printf(""\n Your Roll number ");
scanf("%d",&a.roll_no);
printf(l'\n***********************\n");
printf("Your Name:%s",pa->hame);
printf('"\nYour Department:%s",pa->dept);
printf("\n Your Roll no:%d",pa->roll_no);
printf(l'\n***********************\n");
a.roll_no =update(a.roll_no);

printf("Your Name:%s",pa->hame);
printf("\nYour Department:%s",pa->dept);
printf("\n Your Roll no:%d",pa->roll_no);

Unions

 Unions, like structures, contain members
whose individual data types may differ from
one another

 members within a union all share the same
storage area within the computer’s memory

e cach member within a structure 1s assigned 1ts
Oown unique storage area

Contd...

e unions are used to conserve memory

e are useful for applications involving multiple
members, where values need not be assigned
to all of the members at any one time

union tag {

member 1 ;

member 2;

member m,

b

Contd...

storage-class union tag {
member 1 ;
member 2;

member m;

} variable 1, variable 2, . . .

variable n;

#include<stdio.h>

typedef union{
char name[80];
char dept[30];
int roll_no;
tstudinfo;

main()

{

studinfo a;
printf("a store %d bytes",sizeof(a));

]

#include<stdio.h>

typedef union{
char name[80];
char dept[30];
int roll_no;
}studinfo;

main()

{

studinfo a;

printf("What is your name? ");
scanf(” %[A\n]",a.name);

printf("\n Your department ");

scanf(" %[*\n]",a.dept);

printf("\n Your Roll nhumber ");
scanf(""%d",&a.roll_no);
printf("\n***********************\n");
printf("Your Name:%s",a.name);
printf("\nYour Department:%s",a.dept);
printf("\n Your Roll no:%d",a.roll_no);

}

